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Abstract

A procedure is described for computing the mean curvature along condensed phase interfaces in two or three dimensions,
without knowledge of the spatial derivatives of the interface. For any point P on the interface, the method consists of
computing the portion of volume enclosed by a small template sphere, centered on P, that lies on one side of the interface.
That portion of the template volume is shown to be linear in the mean curvature of the surface, relative to the phase lying on
the opposite side of the interface, to within terms that can usually be made negligible. An analogous procedure is described
in two dimensions. Application of the procedure to compute the mean curvature along a digitized surface is demonstrated.
A bumning algorithm can be included to improve computational accuracy for interfaces having sharp curvature fluctuations.
A minor extension of the method allows computation of the orientation of an interfacial element relative to a fixed reference

frame.

1. Introduction

Recent developments in the use of computer models
that operate on digital images of material microstruc-
tures have made possible a quantitative examination
of the influence of the details of geometrically com-
plex microstructures on macroscopic properties {1-
4]. One class of processes that these models can po-
tentially simulate is sintering phenomena {3,4]. Since
sintering and related processes are often driven pri-
marily by local differences in curvature throughout
the microstructure, sintering models that operate on
digitized microstructure images require a numerical
method for computing curvature along digitized sur-
faces. In this paper, we describe and demonstrate one
such method that has been used successfully in re-
cent sintering simulations [3,4], putting it on a firm
theoretical footing in both 3D and 2D. Analytical and
numerical errors inherent in the method are explicitly

stated and assessed.
1.1. Background

The mean curvature of an infinitesimal element
along a condensed-phase interface represents the
quantity A /8V, where 8A is the incremental change
in the element’s area when it is normally displaced by
local addition of material of volume 8V [5]. Since a
finite positive energy always accompanies formation
of a unit area of an interface, mean curvature plays
an important role in governing the thermodynamics
of interfacial phenomena.

The effects of mean interfacial curvature are man-
ifested in a wide range of both equilibrium and non-
equilibrium phenomena. An example of the former is
the dependence of the equilibrium vapor pressure of a
one-component liquid drop on the drop size. If there
are no surface tractions or body forces deforming the
drop, its equilibrium shape is a sphere of radius R, and
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its vapor pressure, p, is related to its mean curvature ! ,
H = R™!, by the Kelvin equation,

P _ 2QvH
lnp,,_—kBT , (1)

where p, is the equilibrium vapor pressure above a pla-
nar surface, { is the molecular volume of the species
composing the drop, ¥ is the surface free energy den-
sity, k is the Boltzmann constant, and T is the absolute
temperature. Non-equilibrium phenomena in which
mean curvature plays an important role include those
processes acting to reduce the overall interfacial ener-
gies during microstructural development of polycrys-
talline solids: sintering [6,7], grain growth [8], and
Ostwald ripening [9]. For example, the driving force
for diffusive mass transport during these processes is
the gradient in chemical potential, u, between por-
tions of the interfaces (assuming that no other driv-
ing forces, like those for phase transformations, are
present). When the interfacial energy density, ¥, is
independent of crystallographic orientation, then the
excess contribution to g along the interface is de-
termined by H. The dependence on mean curvature
of V,u along the surface can then be found from the
Gibbs-Thomson equation [ 10] for an interface com-
posed of one chemical species,

Vp =2yQVH. (2)

Eq. (2) indicates why theoretical calculations of
curvature-driven processes are usually difficult. An
analytic description of H, as a function of position
along the interface, is required in order to calculate the
instantaneous driving force for curvature-driven mass
transport. When the position of a 2D surface can be
described by an analytic function, an analytical cal-
culation of H is tractable at any twice-differentiable
pointon the surface. If VH is also defined at that point,
the driving force for mass transport is accessible from
Eq. (2), provided that the surface energy is isotropic.
Unfortunately, the surfaces and interfaces in random,

! Throughout this paper we adopt the convention from differential
geometry of denoting H at any point P as the arithmetic mean of
the two principal curvatures, «} and «2, where x| and «2 are the
reciprocals of the radii of two mutually orthogonal “osculating”
circles constructed tangent to the surface at P. We also adopt the
convention of sintering theory of taking a principal curvature to be
positive if the surface normal vector points away from the center
of curvature.

porous polycrystalline solids are tortuous and usually
defy analytical description. Furthermore, curvature-
driven transport generally causes the surface shape to
evolve with time. Modeling such transport therefore
demands tracking the evolving surface, a generally
formidable task. For these reasons, theoretical studies
of mass transport during sintering have been limited
to simple geometries, like the two-sphere madel of
Kingery and Berg [11], and more recently the linear
particle array models of Carter and Cannon [12] and
Kellett and Lange [13]. These and other models have
proven to be very important in elucidating the ma-
jor features of curvature-driven processes. However,
further progress in modeling the development of real
microstructures requires a different approach for as-
sessing and tracking mean curvature variations along
geometrically complex interfaces.

One way of approximating the curvature of an arc
or an interface of arbitrary shape is to first represent
the interface as a polynomial fit to consecutive points
along the interface, and to then compute the neces-
sary spatial derivatives [14]. A related method con-
sists of constructing two orthogonal osculating circles
by fitting each circle to three consecutive points along
the surface coplanar with that circle [15]. The cur-
vature is then determined by the sum of the inverses
of the radii of the osculating circles. These methods
require, at any point P on the surface, selection of
several closely-spaced points within a small neigh-
borhood of P to which a curve is fit. The shape of
that curve, and therefore the computed curvature at P,
can therefore depend heavily on the choice of fitting
points, especially at regions of high curvature.

A third procedure for obtaining relative estimates
of curvature consists, at any point P on the interface,
of computing the portion of the volume enclosed by a
small template sphere, centered at P, that lies on one
side of the interface. This computation is particularly
straightforward when the surface can be adequately
represented by a collection of discrete elements or pix-
els. A similar technique has been employed to obtain
qualitative curvature distributions in simulations of
diffusion-controlled growth of aggregates in 2D with
finite values of y¥ [16-18] and for cellular automata
simulations of curvature-driven sintering in 2D [4]
and 3D [3]. For those simulations, the investigators
obtained a relative curvature measure by counting the
number of pixels external to the surface but within
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either a square [4,16-18] or a spherical [3] tem-
plate centered on a given surface pixel. Such template
schemes represent a generalization of the method, used
by Holm and coworkers for Potts-model-type Monte
Carlo simulations of grain growth [19] on a discrete
lattice, of computing the spin Hamiltonian by count-
ing the number and type of dissimilar nearest neigh-
bors at a given grain boundary site. Although phrased
in terms of a lattice Hamiltonian, their model qualita-
tively predicts the same grain boundary motion as that
predicted by assuming curvature-driven motion [19].

Previous use of the template method for computing
curvature has been justified by the demonstration that
the pixel count described in the preceding paragraph
is roughly proportional to mean curvature [4,16-18]
for a square template?. In 3D, Bentz and cowork-
ers [3] showed analytically that, for the special case
of a spherical template centered on the surface of a
much larger sphere, the enclosed volume is exactly
proportional to the mean curvature of the larger sphere.
Analytical calculations were not provided for non-
spherical surfaces [3].

In this paper we present a more general justifica-
tion of the validity of the template method for com-
puting curvature than has been given in previous pa-
pers {3,4,16-18] by analytically deriving the rela-
tionship between mean curvature and the spherically-
bounded volume described in the preceding paragraph,
for an arbitrary curve (in 2D) or surface (in 3D).
The derivation demonstrates that this bounded vol-
ume is approximately linear in the mean curvature, to
within higher-order correction terms. Estimates of the

magnitudes of the correction terms for typical values o
of the curvature show these terms to be negligible in

most cases. We then describe and illustrate application
of the procedure to computing the discrete analogue
of mean curvature along interfaces whose shapes are
represented as a collection of discrete pixel elements.
Digitization of the surface introduces larger errors that
can cause the result of an individual curvature com-
putation to deviate substantially from the true mean
curvature. Even so, the method produces a reliable

2 For square templates in 2D and cubic templates in 3D, the
curvature computation is subject to variability along surfaces due
to anisotropy in the template shape (see Ref. [4]). This effect
is significantly reduced by using circular (2D) or spherical (3D)
templates.

Fig. 1. (A) Point P centered within a two-dimensional surface
clement S, characterized by the two principle radii of curvature
Rmin and Rmax. (B) Template sphere of radius b centered on P.
The Cartesian reference frame is oriented such that the z-axis is
normal to § at P, and such that P is at the origin. V (see text)
is the portion of the template volume that lies entirely to one side
of § (in this figure, the upper side).

measure of the spatial distribution of curvature along
non-uniform interfaces and throughout complex mi-
crostructures. This latter quality of the method makes
it a useful tool for sintering simulations.

2. Analysis

We wish to analytically justify the assertion that the
mean curvature of a sufficiently small surface element
of a condensed phase « is linear in (within an ad-
ditive correction term) that portion of the volume of
a small sphere, centered on the surface element, that
does not contain a. The meaning of the terms “suffi-
ciently small surface element™ and “small sphere” will
become apparent during the analysis.

Consider a point P lying within a small element S of
a surface that bounds phase a, with outward unit nor-
mal vector (pointing away from «), as in Fig. 1(A).
Assume that S is specified by a function, g, of two
spatial coordinates, and that g is continuous on the el-
ement to at least second order in those coordinates.

The principal radii of curvature at P, Ryin = K.l

and R, = K,,'u-i, {Rmin < Rmax), can in general have
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any sign. Next, consider a small imaginary “template”
sphere of radius b (b << R,;,) centered at P (shown
in Fig. 1(B)). Denote by V that portion of the sphere
volume that does not intersect a.

Without loss of generality, we may orient a Carte-
sian coordinate frame such that (i) the tangent plane
to S, passing through P is the xy-plane with P at
the origin, and (ii) the projection of the two princi-
pal lines of curvature at P onto the xy-plane are the x
and y axes (Fig. 1(B)). With this choice of coordi-
nates, the slope of the tangent plane at P is zero, and
we assume that S can be represented as a convergent
Taylor expansion of g(x,y) about the origin:

1|/[d% 2 d’g 2
glx,y)=x (—) X+ (— y
2 l: 9x2 J om0 Y2 ) reyeo

+2 7' xy| +0(g'x'y*"1y (3)
9%0Y / reye0 !

where

glf o ‘938
J oxidy3=i ) _ o

Because of the placement of the coordinate system, the
principal curvatures ., and «p, at P are equal to
the negative of the first and second partial derivatives,
respectively, appearing in Eq. (3). Furthermore, by
comparing Eq. (3) with an analogous expansion using
orthogonal curvilinear parameters that define lines of
curvature, it can be shown that the third 2nd-order
partial derivative in Eq. (3) is zero [20,21]. Finally,
we rewrite Eq. (3) in terms of dimensionless variables
that scale with the radius of the template sphere, b
(X =x/b, Kpax = bimay, €1c.),

z,='zjg,i =G(X,Y) = ‘Q(K.,w,J(2 + Knin¥?)

+0(e; X737y, (4)

where

o= (26 Y
T\XIVi )y Ly

We assume throughout this analysis that the maximum
magnitude of the four €; terms, €, is small compared
to unity. In other words, we restrict the analysis to
surfaces for which the expansion Eq. (4) is a good
approximation.

(j=0,1,2,3).

It will prove convenient to use cylindrical coordi-
nates R (=r/b), 8, and z rather than Cartesian coor-
dinates. Then Eq. (4) can be rewritten as

Z.= —$R2+ O(e), (5)

where g = 2( Kz €052 8 + Kpin sin 8) ~!. The scaled
volume » = Vb3 is then given by the integral expres-
sion
4 2r  R*(O)
v=§w~/d0 f (Z; — Z,)RdR, (6)
0 .0

where Z, is the equation for the lower half of the
template sphere,

Z,=—-y1-R?, N

and R*(6) is determined by Z; = Z,, and can easily
be shown to be

r I?
R*(8) = E - q2_ﬂ3-' (8)
where
Fr=1-0(*=~1, B=1- 2056) ~ 1 — KO(€)

to order €, with K = ( Ky + Kmin ). Substituting Egs.
(4) and (7) into Eq. (5) gives

27

4 1 1.,

v—§ﬂ+/d0 [ZER“— 5R O(e)
0

1 R*(6)
+z(1- R2)3/2]
3 0

and substituting Eq. (8) gives

_Z 0(€) dé O(e) dé
v= 3 432/ 253 2
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Using the definition of g produces

~(2_0 T .
V—(3 ﬁ )77+8ﬁ2(Kmax+Klmn)

m W TR L
—W(aué) +3 f (1 -5+ W) de,
0
9
where
O(K®) = (Komax + Kmin)® + 4( K3 o + Koin) -
If B8 < 1, then we may expand B8~ according to
B~ "=1+nKO(e)

to order €. Substituting into Eq. (9) yields

_2 k3 aT 3
v—3'n'+ 8(Kmax+Kmm) 384®(K )

~70(€) [1 - %K(K,,m + Kpin) ~ %A(Kz)

9 3
—mK@)(K )] . (10)

where
A(K?) = (Kmax + Knin)? + 2(K2 00 + K2
From Eq. (10}

1 4v 8
H= E(Kmax + Knin) = =7 = TS
11, _
-3 [%9(1( )+0(E)(_)}
4V 8 1

_4v 8 1 Lacws =
- [%e(x )+0(e)(=)] (1)

where the symbol E represents the last term in brack-
ets in Eq. (10). The mean curvature H is therefore ap-
proximately linear in V, provided that K = kb << 1
(which will always be true for a given application if
the template radius b is chosen to be small compared to
the inverse of the maximum expected curvature). The
error in the linear approximation, the bracketed term
in Eq. (11), contains contributions from two sources:
1) the error in the 2nd-order approximation of the sur-
face, and 2) higher order curvature terms. The error is
usually small compared to the first two terms on the

right hand side of Eq. (11), certainly when Kpax <<
1, but even when this limitation is not obeyed. For ex-
ample, choosing values of Ky, = 0.25, Kpar = 0.5,
and b = 0.5, which do not obey Kp,x << 1, then
the first term in brackets in Eq. (11) represents only
a 2.7% accuracy error (the magnitude of the second
term in brackets in Eq. (11) of course depends on the
accuracy of Eq. (4) in approximating the surface).

The second term on the right side of Eq. (11) also
indicates one major effect of the template radius, b:
The maximum magnitude of curvature that can be
measured using the linear approximation is inversely
proportional to b. Smaller templates therefore increase
the range of measurable curvatures in the continuum
Limit. We will see in the next section, though, that
when applying the method to digitized representations
of surfaces, smaller templates decrease the resolution
of the curvature measurement.

A different form for R*(0), Eq. (8), will gener-
ally result for different surface shapes. For example, a
surface element that is a portion of a sphere gives

. [ 1
R(0) =4[1- 7 (8a)

From Eq. (8a) it is easily shown that

H=—e——. (11a)

In other words, the linear approximation is exact for
spherical surface elements.

To summarize, the linear approximation between
mean curvature and V, Eq. (11), provides estimates
of the mean curvature, typically accurate to within
+ 10%, at any point on a surface that can locally
be approximated by a 2nd-order expansion, Eq. (4).
The error in Eq. (4) generally increases with increas-
ing displacement from the origin, that is, Eq. (4) be-
comes less accurate for larger template radii. Finally,
it should be mentioned that the analysis is not strictly
appropriate at points at which there is a discontinuity
in the first or second order spatial derivatives, such as
at sharp corners and edges. At such points the magni-
tude of the true mean curvature is unbounded, while
the volume calculations shown in this section estab-
lish an upper limit on the magnitude at any point that
is dictated by the volume of the template. Applica-
tion of this method at these points can still, however,
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Fig. 2. Right circular cylinder template positioned such that one of
its bases of radius b is tangent to the surface element § at P. The
template height h is great enough to ensure that the other base of
the cylinder does not intersect S. The Cartesian frame is oriented
as in Fig. 1. V. (see text) is the portion of the template volume
that lies entirely to one side of § (in this figure, the upper side).

give some idea of an “apparent” curvature because the
computed magnitude of the curvature will depend on
the difference in slopes on either side of the singu-
larity (razor edges, for example, will yield a higher
computed value of curvature than right edges).

We now proceed to describe a few simple exten-
sions of the template concept that are potentially use-
ful under certain circumstances.

2.1. Cylindrical template

We can equally well use a right-circular-cylinder
template of radius b and height k instead of the spher-
ical template of radius b used in the preceding analy-
sis. In this case, we position the center of one base of
the cylinder on the point P so that the cylinder axis
coincides with the surface normal vector i, and then
require A to be sufficiently large that the other base lies
entirely beneath the surface described by Eq. (4) (see
Fig. 2). The portion of the scaled cylinder volume v,
lying above the surface is then easily calculated, using
Cartesian coordinates, by

1 V1-x2
vc=—/dx / G(X,Y)dyY (12)
S i

where the origin of the Cartesian frame again coincides
with the point P in question, G(X,Y) is given by Eq.
(4), and the z-axis coincides with the cylinder axis.
Integrating Eq. (12) gives

vc=’§’(xm+x’m,-,.)+0(e), (13)

or equivalently,

4
H=w—b[l’c—0(€)]- (14)

Therefore, the only error incurred in computing the
mean curvature by this method is due to any error
in the 2nd-order approximation of the surface, O(¢),
in Eq. (4). Implementation of this method all along
an interface, however, is somewhat more complicated
than that of the sphere method, since the cylinder
method requires knowledge of the surface normal di-
rection before the cylinder can be correctly placed.
We therefore will restrict attention to the spherical
template when discussing computer implementation
in three dimensions.

2.2. Two-dimensional calculations: circular template

The curvature of an arc bounding a 2D “membrane”
of phase a can be computed by using a circular tem-
plate in the same manner as the spherical template is
used in three dimensions. Any infinitesimal arc ele-
ment possessing curvature « at the origin of a polar
coordinate system can be represented as a 2nd-order
Taylor expansion about the origin. Proceeding as we
did to arrive at Eq. (5) in 3D,

O(R) =sin~! [—%KR+ %(KR)’

+0(€) (% - %(Kk)z)] , (15)

where 8 is the angle from the tangent line passing
through P, K = «b, and € is the 2D analogue to €
appearing in Eq. (5). The portion of scaled area, a =
Ab~?, of the template circle that excludes phase « is
then given by

1 m-8(R)
a=/RdR f d6 (16)
V] O(R)

which integrates to give, after expanding 8(R) to 3rd
order in K,

T
2
or, equivalently

ey 3T |1 9,2 3
K=3a 2+[8K 0(5)(321{ 2)].(18)

7.1 3 1
a=—+ '§K+0(€) (32K 2) (17)
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Again, the error in the linear approximation, the term
enclosed in square brackets, is usually small compared
to the true curvature. For example, taking the surface
as a circle for which K = 0.5, the error is 1.2%.

As a further generalization of the method in 2D
(omitted from the 3D description due to mathemati-
cal complexity), one can bias the area elements over
which integration is performed by including a dimen-
sionless weighting function of the form

w
Rn+1’

W(R) = (19)
where w is a positive real constant and n an integer.
A weighting factor like Eq. (19) can potentially be
useful because it reduces the dependence of the area
integral, Eq. (16), on portions of the surface that are
further removed from P. By biasing the computation
to that part of the surface very near P, weighting the
integral can increase accuracy. Using Eq. (19), Eq.
(16) then becomes

! 7m—6(R)
a,‘.=/WRdR / dé,
[1] #(R)
w—60(R)

=w/R"”dR f dé. (20)
0 arR)

Examination of Eq. (20) reveals that n < 0 for the
integral to remain bounded. Of course, forn = —1 and
w = 1, Eq. (20) reduces to Eq. (16). Increasingly
negative values of »n will bias a,, away from P. Since
curvature depends on highly localized variations in the
surface at P, we will perform the integration forn = 0.
In that case,

_ 2 5 3 |
K——aw-—27r+[4—8K —0(e) (4-K ——2)].
(21)

Comparison of this result to Eq. (18) shows that the
error in the linear approximation due to higher-order
curvature terms can be reduced by almost 20% if 1/R
weighting is incorporated, but 1/R weighting is inef-
fective for reducing the error caused by approximat-
ing the surface to second order. In the remainder of
this paper, we will focus on the unweighted result, Eq.
(18), since it is easier to implement computationally,

and the error term in Eq. (18) is usually small enough
already.

3. Application to discretized interfaces

In this section we demonstrate the use of the cur-
vature computation on images of surfaces that have
been mapped onto a regular 2D (3D) grid of square
(cubic) pixel elements. Each pixel in the grid can be
assigned a phase corresponding to those in the image,
and any pixel containing phase a, for example, is then
an a-f surface pixel if it is in contact along an edge
(face) with a B-pixel. The area (volume) calculations
described in the previous section therefore reduce to
counting pixels within a digitized circular (spherical)
template. Discrete mapping of an interface therefore
allows a simple computation of mean curvature for
every interface element in the grid.

As with any other method that uses digital images,
this procedure can be memory intensive, especially
when applied in sintering simulations of porous pow-
der compacts. Accurate curvature computation on a
single particle surface usually requires that the parti-
cle contain at least ~100 pixels in 2D, or ~1000 pix-
els in 3D. Simulating the sintering of a portion of a
compact containing, say, 1000 particles therefore re-
quires a lattice composed of 2 x 106 pixels, or about
1 Mb of memory. In addition, the curvature computa-
tion method itself requires some memory allocation,
since the position and pixel count of each interfacial
pixel must be stored. But if the position and pixel
count each use 4 bytes of memory for each interfa-
cial pixel, and if the number of interfacial pixels is
about 5% of the total number of pixels (typical for
a powder compact with ~1 gm-diameter particles),
then the curvature method requires only around 10%
extra memory allocation. Typical workstations can ac-
commodate this memory requirement, although much
larger-scale simulations may require the memory ca-
pacity of a supercomputer.

3.1. Sources of error

When performing the curvature computation in the
digital mode, several sources of error are encountered
in addition to those described in the previous section.
One source of error lies in the digitized approximation
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Table 1
Deviation in area of a circle composed of discrete square pixels
from the area of a true circle of the same diameter

Circle diameter (£) % Area Error
5 70%
9 85 %
15 02%
2] 0.8 %
3t -08 %
41 -05%

Table 2
Deviation in volume of a sphere composed of discrete cubic pixels
from the volume of a true sphere of the same diameter

Sphere diameter (£) % Volume Error
S 38 %
9 19%
15 3%
21 20%
31 -05%
41 0.1 %

of the template. As Table 1 shows, the area of a “cir-
cular” template depends significantly on the number
of pixels used to construct it. Assigning length unit £
to each pixel edge, the area within the template is not
equal to the true area of a circle of the same diame-
ter. But the error in template area becomes quite small
when a sufficient number of pixels are used, and Ta-
ble 1 shows that a 15-¢ or greater diameter gives an
excellent approximation to the true circle area (Table 2
shows similar information for the volume of spherical
templates). Table I also shows that using more pixels
to refine the circle shape, by a factor of 2 or 3 beyond a
15-¢ diameter, does not significantly improve the area
approximation, while Table 2 seems to indicate that in-
creasing a sphere’s diameter over this same range does
improve the approximation to a true sphere’s volume
(although the error must approach zero in the limit
of infinite diameter). Employing larger templates also
increases the portion of surface included in the curva-
ture computation, and for this reason generally causes
additional error due to possible non-uniformity of cur-
vature over larger areas. Furthermore, the CPU time
required for each curvature computation will increase
roughly as the square of the template diameter in 2D,
and as the diameter cubed in 3D. Relatively small tem-

plates are therefore particularly advantageous in terms
of computational accuracy and speed, as long as the
area/volume accuracy of the template is adequate.
Another source of error when using digitized tem-
plates is the finite resolution of the computation. If the
template is composed of N pixels, then only N dif-
ferent values of the curvature are resolvable by this
method. Increasing the resolution by increasing N will
reduce this problem, but at the same time will tend
to magnify the errors described in the previous para-
graph. Therefore, for a given application the user must
decide the relative importances of accuracy, speed, and
resolution when choosing the size of the template.
Further sources of error arise from the discrete ap-
proximation of the surface shape as step-like shifts in
position, which can alter both the accuracy and pre-
cision of the curvature computation. Although a lin-
ear relation between curvature and the pixel count is
still expected, the slopes and intercepts predicted from
Egs. (11) and (18) are not likely to be correct due
to the discrete approximation of the surface and tem-
plate. When applying the method to a digital image, it
is necessary to make an “experimental” determination
of the correct values of the slope and intercept in the
following way. For a given template diameter, the true
mean curvature of a circle (or sphere in 3D) can be
plotted against the average value of the pixel counts
resulting from each site along the surface. We use av-
eraging because, as will be shown shortly, the pixel-to-
pixel variation in computed curvature over a surface
with nominally constant non-zero curvature can be
substantial, although the average value over the entire
surface is quite accurate (see Fig. 4). By repeating for
circles (spheres) of varying radii, one can use linear
regression to determine the equation of the line that
best fits the collection of plotted points. Such a plot is
shown for 2D in Fig. 3, using a circular template with
diameter 2b = 15¢. The predicted continuum equation
(now in terms of the physical quantities x, A, and b),

K —A— — (18)
becomes, in the discrete approximation?

3We center the template on the center of a surface pixel to
achieve this result. Slightly different values for the numerators
would result if the template were centered on, for example, a pixel
comer.
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Fig. 3. Pixel count at surface sites along a circle of radius x~!,
plotted against the true curvature of the circle in the continuum
limit. Template circle diameter = 15 £. Each point is the average
of the pixel count computed for all surface sites, and error bars
represent +1 standard deviation.
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Fig. 4. Computed curvature along one-eighth of the surface of
a circle (diameter = 61 £), using a template circle (diameter =
15 £), showing the effect of averaging the computation over all
surface pixels within a 3 x 3 box centered on a given surface
pixel P. 8, plotted along the x-axis, is tan~!(y/x), where x and y
are the x- and y-position of P relative to the circle center.

2.807 2.5867
K= P (C)——%—, (22)

where (C) is the average pixel count. In 3D, using a
template with diameter 2b = 9 £, the predicted con-
tinuum equation,

4 8
Hey — - —
mb*  3b an

becomes
3.623 6.337
He=Z7 € = 23

The diameter of the template sphere modestly affects
the values appearing in the numerators of these fit-
ted relations because digitized templates of different
diameter have slightly different shapes. Using a tem-
plate sphere diameter of 15 £, linear regression gives
instead of Eq. (23),
3.868 7.179

H= wbt © 3 (24)

The curvature value obtained for an individual sur-
face pixel, using a relation like Eq. (22) or (23), will
generally suffer from precision error. This is because,
even along surfaces of constant curvature, the discrete
approximation of the surface introduces variation in
the computed curvature (indicated by the error bars
in Fig. 3). For example, Fig. 4 shows the variation
in computed curvature with position along the sur-
face of a digitized circle with a 61 £-diameter (x =
0.033 ¢-1) (solid line). For this figure, the template
diameter is 15 £, and Eq. (22) was used to compute
the curvature. The arithmetic mean of the 23 com-
puted values is 0.0332 ¢!, and therefore the mean has
a combined standard uncertainty (u.) [22], or accu-
racy, of ~ 0.0001 £~! (1%). But u, of the individual
computations (precision), measured by one standard
deviation, is 0.0297 £~ (£89% of the true mean).
The combined standard uncertainty of individual cur-
vature computations is similar for constant-curvature
surfaces in 3D: using a 9 é-diameter template sphere,
u. for individual computationsis &~ 0.04 £~! (+£92%
and +124% of the mean curvature value for a 41 ¢-
diameter and a 61 ¢-diameter sphere, respectively).
Precision error this large can potentially affect the sign
of the difference in curvature between two surface
sites and, consequently, the sign of the driving force
for mass transport between them during sintering pro-
cesses.

Precision can be increased substantially by using
a finer pixel grid. For example, by halving the pixel
edge length (from 1 £ to 0.5 £), u, of individual cur-
vature computations on a 41 £-diameter sphere, us-
ing a 9 £-diameter template, decreases from 0.04 ¢!
t0 0.03 £~! (or from 92% to 68% of the true curva-
ture). In fact, all the errors described in this section
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can be reduced by refining the pixel grid. However,
such a remedy requires rather large increases in mem-
ory allocation. If the pixel edge length is halved, then
eight times as many pixels are required to represent
the same portion of a 3D microstructure and, further-
more, a scalar machine would spend about eight times
as much CPU time to perform the computations over
that portion. )

One simple way to increase precision consists of,
for each pixel P, computing an arithmetic mean of
the curvatures computed for P and all the neighboring
surface sites within a prescribed radius about P. Fig-
ure 4 shows that using an arithmetic mean over pro-
gressively larger neighborhoods steadily increases the
precision of the curvature computation. The value of i,
for the curvature computations is 0.029 £~ (89% of
the true curvature) without averaging, and is reduced
to 0.003 ¢! (11% of the true curvature) by aver-
aging over all surface pixels within a radius of 11 £.
Only slight increases in CPU time are required for av-
eraging. But in complex microstructures, large areas
of constant curvature may not exist, so that averaging
over large areas may not be feasible without employ-
ing a finer pixel grid.

3.2. Examples

These various sources of error can all substantially
reduce the confidence one may have in the reliability
of an individual result of this method applied to dis-
cretized interfaces. The strength of the method, how-
ever, is in accurately reflecting the spatial distribu-
tion of curvature throughout a complex system com-
posed of one or more interfaces. Where the method
has been applied to sintering simulations [3,4] it has
provided quite realistic predictions of the direction of
mass transport throughout complex 2D and 3D mi-
crostructures. Further illustrations of this strength are
provided by the following two examples, one in three
dimensions and the other in two.

The first example is that of computing the mean
curvature of the surface of a digitized sphere. Fig. 5
shows the computed mean curvature of a sphere plot-
ted against its true mean curvature, R~!. The template
sphere diameter used was 9 £, and Eq. (23) was used
to relate the pixel count to the mean curvature (no
averaging over neighboring surface pixels was per-
formed). The values shown are averages of the values

0.25 T T . T
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Fig. 5. Computed mean curvature of the surface of a sphere of
radius R, plotted against the true mean curvature, 1/R. Computa-
tions were performed using a template sphere with diameter =9 £.
Each point represents the arithmetic mean of the mean curvature
computed for each pixel along the sphere surface, and error bars
indicate +1 standard deviation.

computed for every surface pixel in one octant, and
error bars represent 1 standard deviation. The aver-
age value of mean curvature for each sphere is very
accurate, although the precision is low because no av-
eraging was performed over neighboring surface sites.
This example is nothing more than a verification of the
calibrated relation between pixel count and curvature,
Eq. (23). But it does point out that the method should
provide a good measurement of, for instance, the av-
erage driving force for mass transfer between the vari-
ous particles comprising a sintering microstructure, al-
though precision error would cause fluctuations about
that average value.

The second example is that of computing the cur-
vature along a sinusoidal arc in two dimensions, like
that analyzed by Mullins [7]. The arc is described by

y = f(x) = A sin(kx). (25)

The curvature of an arc described by Eq. (25) can be
calculated analytically according to the expression

e ARsin(kx)
T (142327 (14 A%2cos?(kx))3/?’

where f, and f, are the first and second derivatives
of f with respect to x. Figure 6 shows both the com-
puted and analytical values of the curvature at a num-
ber of points along one wavelength (2mk™") of the

(26)

K
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Fig. 6. Computed and analytical values of the curvature for a
sinusoidally-perturbed surface (v = Asin(kx)) plotted along one
wavelength A (27k~!) of the perturbation. In this graph, A = 30 ¢,
A = 100 £, and the diameter of the template circle is 15 £,

surface. Each individual computed value represents an
average over neighboring surface pixels that share ei-
ther a common edge or corner. Extremal curvature val-
ues are predicted quite well by the method (to within
3%), and somewhat greater deviations from the true
curvature occur at lower curvature magnitudes.

3.3. Refinements

We now describe briefly two refinements to the cur-
vature computation when it is applied to digitized in-
terfaces. The first represents a potential improvement
in computational accuracy, while the second allows
collection of information concerning the orientation
of the interface.

At regions of an interface where sharp fluctuations
in curvature occur over small distances, or at regions
where two or more separate interfaces are closely
spaced, the template method for computing curvature
may generate errors not discussed in previous sections.
We illustrate the source of this error schematically in
Fig. 7. Figure 7( A) shows the region near the point of
contact between two spheres. The true mean curvature
at point P is simply the curvature of the right-hand
sphere, namely B~!. But since the template sphere
may overlap a portion of the left-hand sphere, the cur-
vature computation may generate too low a value for
the curvature at point P, since it effectively takes the
total number of template pixels and subtracts all solid
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Fig. 7. (A) Position of a template circle used to compute the
curvature at point A in the vicinity of the point of contact be-
tween two larger circles. The intersection of the template with the
left-hand circle will cause an erroneously low computed curvature.
(B) Use of a burning algorithm to test for the connectivity of the
solid pixels within the template circle. Cross-hatched (bumed)
pixels are those that are connected to point A. All unburned pixels
within the template are counted in the curvature computation.

pixels within the template. The curvature computation
is especially prone to this error along crack surfaces
or in partially-sintered powder compacts. One could,
in principle, modestly decrease the error in these re-
gions by decreasing the template radius, but an algo-
rithm that tests for such regions and automatically ad-
justs the template radius in response to some criterion
would likely be computationally intensive.

A simpler way to reduce errors caused by template
overlap, without adjusting the template radius, is to
incorporate a variant of the “burning” algorithm, fre-
quently used in percolation models to assess the con-
nectivity of a phase in a microstructure. For example,
assume that the spheres in Fig. 7 are solid and the
region surrounding them is a pore phase composed
of some inert vapor. Then applying the burning algo-
rithm at point P, one “burns” all the solid pixels within
the template that can be reached from point P with-
out encountering a pore pixel (shown in Fig. 7(B)
with darker shading). The difference between the total
number of template pixels and the burned solid pixels
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can then be used to obtain a more accurate estimate
of the mean curvature at point P, since the region
of overlap with the left-hand sphere does not burn.
The burning algorithm can therefore substantially in-
crease the accuracy of the curvature computation near
these kinds of microstructural features. For example,
in the relatively extreme 2D case of a flat interface of
a crack that is one pixel wide, the unmodified method
yields a curvature value of -0.442 £, while includ-
ing the burning algorithm results in a curvature value
of -0.003 £~1, which is much closer to the true value
of zero for the crack interface. Of course, there are
limits to the effectiveness of the burning algorithm.
If the template in Fig. 7 were moved several surface
pixels closer to the point of contact (point @), the
burning algorithm would not help since all the solid
pixels within the template would burn. Template di-
ameter ultimately limits the resolution of the method
in these instances.

The burning algorithm can also be applied if all pix-
els composing a given particle are assigned a unique
label. For example, suppose the pixels composing the
left particle in Figure 7 are assigned a different la-
bel than those composing the right particle, indicat-
ing it is a separate grain. By burning only pixels with
like labels, the burning algorithm applied at Q could
again produce a more accurate curvature value than
that produced by the unmodified method. Assigning
different labels to pixels in different particles is partic-
ularly useful in sintering and grain growth simulations
where grain boundaries can be identified as the in-
terface between two solid regions with different pixel
labels {24,25]. The curvature along the grain bound-
aries can then also be computed using the burning al-
gorithm.

Finally, the orientation of an interface can be both
an important thermodynamic and kinetic factor when
the specific interfacial free energy, ¥, is anisotropic.
In such cases theory predicts [26], and experiments
confirm [27,28], that interface orientations with lower
values of ¥ are favored over those of high . It is
straightforward to compute the orientation, relative to
some fixed coordinate frame, of the surface normal
vector, ii, erected at any point P along a digitized
surface. To determine the orientation of &, one can
simply keep track of the x, y, and z positions, relative
to P, of each pixel in the template volume as it is
counted. Using P as the origin, the direction of fi

is given by the 3-tple (X|a|™", ¥[8~ ., Z|a|™"),
where |ii] = (X2 + Y2 + Z2)!/2 and, for example,

X=ix.' (27)
=1

and m is the number of pixels counted in the curvature
computation at P. The orientation of fi is then specified
by, for instance, the two angles

¢ =tan™" (%)
P (\/XZ—+W>

7 (28)

‘used in a spherical polar coordinate frame (see

Fig. 8(A)). Figure 8(B) shows the computed orien-
tation ¢ of fi along the perimeter of a circle in 2D.
To construct this figure, the diameter of the circle
was chosen as 121 £, and the template circle diameter
was 13 £. The computed values of ¢ are correct to
within £3%. Figure 8(C) shows the computed value
of ¢ for two different values of #, and again the
computed values of ¢ are quite accurate. Because it
uses much of the same data and is accomplished at
the same time as the curvature computation, deter-
mination of the surface normal orientation requires
relatively little additional computational effort.

4. Summary

A conceptually and computationally simple numer-
ical technique for computing mean interfacial curva-
ture has been demonstrated. The procedure requires
no detailed information about the shape of the inter-
face, and consists of determining the portion of vol-
ume enclosed by a template sphere (or circle in 2D)
that lies on one side of the interface. The mean cur-
vature of the interface, relative to the phase lying on
the opposite side, is then approximately linear in this
computed volume. Higher-order correction terms to
the linear approximation have been shown to be negli-
gibly small in most cases for appropriate choice of the
template radius. Application of the procedure to digi-
tized representations of interface images are straight-
forward and yield accurate estimates of the spatial
distribution of curvature along interfaces, although er-
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Fig. 8. {A) Angles € and ¢ used to describe the orentation of
surface normal vector A, {B) Computed angle ¢ of the surface
normal at a point P along the perimeter of a circle in the xy-plane,
relative to the x-axis, plotted vs. the trye value of ¢ given by
wan~'(¥/X), where X and ¥ are the x~ and y-position of the
surface pixel relative to the circle center. The template circle
diameter 4 = 15 £ (C) Values of ¢ computed at two different
values of & = 307 and @ = 40° on a sphere with diameter 61 £ .
Template sphere diameters are d= 9 £ and 13 £

rors in individual measurements arise from the dis-
crete representation of the interface. These errors can
all be reduced by refining the pixel grid, at the ex-
pense of increased memory allocation and CPU time.
Incorporation of a burning algorithm bas been shown
to provide greater accuracy in regions having sharp
curvature fluctuations, like those along sharp crack-
like features. A simple extension of the algorithm al-
lows accurate computation of the interface orientation
relative to a fixed reference frame.
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